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Molecular pixelation: spatial proteomics of 
single cells by sequencing

Filip Karlsson    1 , Tomasz Kallas1, Divya Thiagarajan1, Max Karlsson    1, 
Maud Schweitzer1, Jose Fernandez Navarro    1, Louise Leijonancker1, 
Sylvain Geny1, Erik Pettersson1, Jan Rhomberg-Kauert    1, Ludvig Larsson1, 
Hanna van Ooijen1, Stefan Petkov1, Marcela González-Granillo1, Jessica Bunz1, 
Johan Dahlberg1, Michele Simonetti    1, Prajakta Sathe1, Petter Brodin    2,3,4, 
Alvaro Martinez Barrio1 & Simon Fredriksson    1,5 

The spatial distribution of cell surface proteins governs vital processes 
of the immune system such as intercellular communication and 
mobility. However, fluorescence microscopy has limited scalability in 
the multiplexing and throughput needed to drive spatial proteomics 
discoveries at subcellular level. We present Molecular Pixelation (MPX), an 
optics-free, DNA sequence-based method for spatial proteomics of single 
cells using antibody–oligonucleotide conjugates (AOCs) and DNA-based, 
nanometer-sized molecular pixels. The relative locations of AOCs are 
inferred by sequentially associating them into local neighborhoods using 
the sequence-unique DNA pixels, forming >1,000 spatially connected 
zones per cell in 3D. For each single cell, DNA-sequencing reads are 
computationally arranged into spatial proteomics networks for 76 proteins. 
By studying immune cell dynamics using spatial statistics on graph 
representations of the data, we identify known and new patterns of spatial 
organization of proteins on chemokine-stimulated T cells, highlighting  
the potential of MPX in defining cell states by the spatial arrangement  
of proteins.

The spatial organization of immune cell surface receptors governs 
multiple functions such as dynamic tuning of cell signaling1, cell–cell 
communication2, T cell effector function3, movement via adhesion 
receptors4, drug mode-of-action5 and efficacy of cellular therapies6. 
Spatial protein organization has traditionally been studied with micros-
copy, using fluorophore-labeled antibodies on immobilized samples7, 
or with imaging flow cytometry8. These typically provide data in one 
focal plane, in 2D, for about four targets per staining cycle7. For higher 
multiplexing in microscopy, iterative staining, imaging or bleaching 
is needed at the cost of sample throughput7. However, imaging flow 
cytometry cannot be subjected to imaging cycles. Signal to noise is also 

hampered by autofluorescence and spectral bleedthrough between 
channels. Super-resolution imaging has provided groundbreaking 
insights into cellular functional responses and signaling9, but is even 
more limited in multiplexing and throughput. Methods that rely solely 
on nucleic acid sequence to image biological samples have been pro-
posed10,11 and demonstrated for RNA in a diffusion-based mechanism12. 
These methods, also referred to as DNA microscopy, use multiple DNA 
tags to reflect biomolecule identity and position in the biological sam-
ple, and are anticipated to increase sample throughput, multiplexing 
and resolution, far beyond the limits of microscopy10. However, they 
have not yet been demonstrated for proteins.
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performing MPX, then subjecting a subset of 500 cells to PCR-based 
library preparation for sequencing. After data processing of sequence 
reads using the open source Pixelator pipeline (see Methods), 477 and 
579 distinct cells were identified in the output data for the two repli-
cates, which corresponded well with the 500 cells that were subjected 
to PCR and sequencing. The titration of cell input numbers between 50 
and 1,000 has further shown that there is a strong correlation between 
the number of cells input to PCR and the number of detected cells in 
the data following Pixelator processing, indicating that one and not 
several connected graph components are generated from each cell 
after data processing (Supplementary Fig. 2). Graph connectivity is 
driven to a large degree by highly abundant and ubiquitous markers 
such as HLA-ABC, B2M and CD45, which are consistently abundant 
across various immune cell types.

The MPX protein count data matrices were processed to visualize 
and annotate cellular identities across the cells in the two replicate 
samples (see Methods; Data post-processing). Protein counts were 
centered log ratio (CLR)-transformed, and Louvain clustering identi-
fied seven clusters of cells with shared identity (Fig. 2a). The clusters 
were manually annotated using a differential abundance test (two-sided 
Wilcoxon rank-sum test, downsampled to 50 cells per cluster; Sup-
plementary Table 1), in which each cluster was compared to other 
cells, resulting in 33 proteins with significantly different abundance 
(Bonferroni-adjusted P < 0.01, absolute average log2(fold change) > 2) 
(Fig. 2b). The cells were visualized in a uniform manifold approxima-
tion and projection (UMAP)14 (Fig. 2a), which displays separated clus-
ters corresponding to the main cell populations expected in PBMCs; 
T cells, B cells, NK cells and monocytes. The formation of separate 
cell type-specific clusters demonstrates that MPX is able to perform 
single-cell profiling without the need for physical compartmentali-
zation of each individual cell or combinatorial cell barcoding using 
split-pool strategies.

The estimated frequencies of the identified cell populations were 
similar between the two replicate samples, with average levels around 
expected percentages; 70.0% T cells (52.5% CD4 T cells, 12.8% CD8 
T cells, 4.6% mucosal-associated invariant T cells), 9.3% NK cells, 15.1% 
B cells and 5.6% monocytes (Fig. 2c). MPX generated on average 1,737 
DNA-pixel A zones and 9,580 AOC UMIs per cell, with 5.6 UMIs per UPI-A 
pixel (Extended Data Fig. 1). Furthermore, cell population frequencies 
from MPX were consistent with those observed with flow cytometry, 
with similar but varied signal to noise for each marker (Supplementary 
Fig. 3 and Supplementary Table 2).

Abundance from all targets showed expected specificity patterns 
(Supplementary Fig. 4), exemplified by CD3 co-occurring with CD4 
and CD8 in CD4 T cells and CD8 T cells, respectively, and by CD19 and 
CD20 exclusively found on B cells (Fig. 2d). Isotype control levels were 
low, with mIgG1, mIgG2a, and mIgG2b constituting only 0.03%, 0.15% 
and 0.04%, respectively, of the total AOC counts per cell on average 
(Supplementary Fig. 5). The cytoplasmic control target beta actin 
(ACTB), used to verify plasma membrane integrity, also showed low 
levels of 0.02%.

A technical duplet rate of less than 1% was estimated, as no cells 
with incompatible markers were found when mixing T and B cell lines 
fixed separately, followed by processing through the MPX work-
flow (Extended Data Fig. 2a,b). This is below the range observed for 
single-cell RNA sequencing methods15 and also displays the specific-
ity of the AOCs and of the MPX reaction. Additionally, the T and B cell 
mixing data were used to exemplify the dynamic range of individual 
AOCs expressed in only one of the two cell lines, with up to 100-fold dif-
ference in abundance levels for some markers (Extended Data Fig. 2c).

Polarity scores by spatial autocorrelation from stimulated 
T cells and drug-treated B cells
The graph-based data generated by MPX can be used for spatial analysis 
by interrogating the edge or node attributes representing different 

Here, we present MPX, which uses DNA-tagged AOCs bound to 
their protein targets on chemically fixed cells to survey cell surface pro-
tein arrangement in a highly multiplex fashion. The assay is performed 
without sample immobilization or single-cell compartmentalization, in 
a standard reaction tube. The spatial analysis of protein arrangement is 
enabled by serially forming two associations between spatially proxi-
mate AOCs into local neighborhoods through the incorporation of a 
unique molecular identifier (UMI), similar to the proximity barcoding 
assay13. The generated amplicons are sequenced and spatial relation-
ships of proteins are inferred from graph representations of the data 
for each single cell.

AOCs bound to cells are associated into local neighborhoods using 
DNA pixels, which are single-stranded DNA molecules with a diameter 
of <100 nm (see Methods). The upper limit of resolution, 280 nm, was 
estimated by dividing the surface area of a lymphocyte by the average 
number of DNA pixels per cell (Supplementary Fig. 1). Each DNA pixel 
contains a concatemer of a UMI sequence called a unique pixel identi-
fier (UPI) and is generated by rolling circle amplification from circular 
DNA templates. Once added to the reaction, each DNA pixel can hybrid-
ize to multiple AOC molecules in proximity on the cell surface. The 
UPI sequence of the hybridized DNA pixel is then incorporated onto 
the AOC oligonucleotide by a gap-fill ligation reaction, thus creating 
neighborhoods where the set of AOCs within each neighborhood share 
the same UPI sequence. Following enzymatic degradation of the first 
DNA pixel set, a second set of DNA pixels is similarly incorporated by 
hybridization and gap-fill ligation reactions (Fig. 1a). The generated 
amplicons are then amplified by PCR and sequenced. Each sequenced 
molecule contains four distinct DNA barcode motifs; a UMI to enable 
identification of unique AOC molecules, a protein identity barcode and 
two UPI barcodes with neighborhood memberships.

The relative location of each unique AOC molecule can be inferred 
from the overlap of UPI neighborhoods created from the two serial 
DNA pixel hybridization and gap-fill ligation steps (Fig. 1a). Each 
sequenced unique molecule can be represented as an edge in a bipartite 
graph, with UPI-A and UPI-B sequences as nodes and protein identity 
as edge attributes (Fig. 1b), or alternatively as a one-mode projected 
graph of UPI-A sequences as nodes and protein identities as node 
attributes. The graphs generated from a sequenced sample following 
data processing and filtering contain graph components that can be 
separated into distinct graphs corresponding to single cells. The spatial 
analysis of protein arrangement, such as the degree of clustering of a 
single protein or colocalization between two or more proteins, can be 
performed by interrogating the location of edge or node attributes on 
the graph representations of each cell.

Using a panel of 76 AOCs targeting immune cell surface proteins, 
and four control AOCs, we demonstrate the ability of MPX to generate 
single-cell data based on protein abundance from peripheral blood 
mononuclear cells (PBMCs). Next, the method was used to quantify the 
degree of spatial clustering or polarization from MPX polarity scores 
of each assayed protein upon modulation of the cell by a therapeutic 
antibody or by capping using a secondary antibody. Finally, abundance, 
polarity and pairwise colocalization of the target proteins was studied 
on immune cells subjected to chemotactic migration stimulation.

Results
MPX data comprise both the spatial location and abundance of the 
targeted proteins, and can therefore be processed similarly to data 
from other single-cell technologies to annotate cells by their identity, 
as defined by the proteins displayed on their surface. To demonstrate 
the ability to generate single-cell data, a heterogeneous sample was 
processed using a 76-plex target panel against T cells, NK cells, B cells 
and monocytes, and the distribution of protein count signatures was 
assessed from the generated count data from each cell.

PBMCs from a healthy donor were fixed with paraformalde-
hyde (PFA) and assayed in two replicates by first staining with AOCs, 
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protein targets. Spatial autocorrelation can be used to measure clus-
tering or nonrandomness of a spatial variable. A polarity score derived 
from the Moran’s I autocorrelation statistic was calculated for each 
protein marker per cell from spatial weights derived from the adjacency 
matrix of cell graphs (see Methods), in which positive polarity scores 
indicate clustered spatial distribution, and scores centered around 
zero indicate random spatial distribution.

To evaluate the ability to detect clustered protein expression 
from MPX data, we spatially clustered or ‘polarized’ CD3 by a capping 
reaction, using the CD3 AOC and a secondary anti-mouse antibody 
prior to PFA fixation, staining with the remaining AOCs and MPX. The 
PBMC MPX data were filtered for the T cell fraction, resulting in a total 
of 619 and 556 T cells for the capped and control samples, respec-
tively. In a second approach to demonstrate protein polarization,  
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Fig. 1 | Molecular Pixelation. a, Barcoded AOCs are bound to their respective 
target proteins on cells (1). DNA pixel set A then hybridizes to the universal BS1 
sequence of several proximal AOCs, followed by gap-fill ligation to incorporate 
the UPI sequence of each DNA pixel and a common pixel BS2, generating UPI-
A-based spatial zones (2). Similarly, DNA pixel set B hybridizes to the extended 
AOCs, adding UPI-B (3). The final product is amplified by PCR using REV and FWD 

primer sites and sequenced. b, Each sequenced AOC molecule is represented 
as an edge in a bipartite graph, with the two UPI sequences as nodes and 
protein identities as edge attributes. The sequence data representing each cell 
generate a graph component from the association of AOCs into two partially 
overlapping UPI zones. The spatial analysis of protein arrangement is enabled by 
interrogating the location of node or edge attributes within the graph.
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we analyzed the distribution of CD20 after treatment of Raji cells 
with a rituximab-based AOC before PFA fixation. Rituximab, a mon-
oclonal therapeutic antibody, is known to cluster CD20 on B cells, 
enhancing antibody-dependent cellular cytotoxicity-based cancer 
killing5. Untreated Raji cells were used as a negative control. A total 
of 684 and 440 Raji cells were included in the treated and control  
groups, respectively.

As seen in Fig. 3a,e, polarity scores were significantly elevated 
for the CD3-capped and the rituximab-treated samples (two-sided 
Wilcoxon rank-sum test, downsampled to 50 cells; Benjamini– 
Hochberg adjusted P value of 4.2 × 10−10 and 3.8 × 10−14, respectively) 
compared to controls (Supplementary Table 3). No other proteins 
showed similar levels of difference between the treated sample and 
control, as can be seen in the resulting volcano plots (Supplementary 
Fig. 6). 2D graph representations (Fig. 3b,f) and spherical 3D density 
heat maps were generated from force-directed graph layouts of one 
representative CD3-capped T cell and one CD20–rituximab-treated 

Raji cell to visualize the polarized distribution (Fig. 3c,g). Fluorescence 
microscopy for CD3 and rituximab was performed to validate the spa-
tial redistribution of the target proteins upon treatment (Fig. 3d,h).

As an interesting note and to highlight the ability of MPX for 
new spatial discoveries through its strength of high multiplexing, 
we also found previously unreported strong clustering for CD54 and 
CD82 individually in Raji cancer B cells. This was not seen in PBMCs, 
which could potentially be exploited by cancer therapeutics based 
on antibody-dependent cellular cytotoxicity (Extended Data Fig. 3).

Colocalization of protein pairs
The colocalization of cell surface proteins has a crucial role in driv-
ing cellular processes. To accurately quantify pairwise combinations 
of measured markers and identify patterns of colocalized protein 
groups, we developed an MPX colocalization score (see Methods). 
This score is based on Pearson’s correlation coefficient (r) and Monte 
Carlo simulation, and enables comparison of measured scores with 
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PBMCs, in which counts from each cell graph component are clustered into 
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scores obtained from simulated cells that possess an equal distribu-
tion of marker counts but random localization. The score reflects the 
degree of spatial co-occurrence of two proteins by quantifying the 
deviation from what would be expected by random chance (minimiz-
ing the influence of bias from experimental perturbations), as well as 
protein abundance.

A negative colocalization score may also provide valuable insight, 
and is a reflection of segregation of protein markers. One such exam-
ple is found in interacting cells, such as B cell and T cell complexes. 
Further analysis of the PBMC dataset revealed a small fraction of cells 
with abundance signatures consistent with both B and T cells, indi-
cating that they may be B–T cell complexes. Colocalization scores 
between multiple B cell-specific and T cell-specific marker pairs for 
these presumed complexes were strongly negative, illustrating the 
expected spatial segregation of these marker pairs. Furthermore, 

graph visualization of the complexes showed a clear separation of the 
B and T cell markers into distinct regions in the graph (Extended Data 
Fig. 4a–f and Supplementary Video 1).

Combined spatial analysis of chemotactic T cells
To further demonstrate the applicability of MPX, we detected cel-
lular structures, namely uropod formation in migrating immune 
cells. Uropods are critical for cytotoxic T cells to infiltrate tumors16, 
associated with immune checkpoint inhibition efficacy and overall  
cancer survival17.

Two different types of conditions were applied to stimulate T cells 
to attain a migratory phenotype and form uropods. The cells were 
either in suspension, or immobilized to a plate coated with only CD54 
(ICAM1) or in combination with chemokine stimulation by either CCL2 
(MCP1) or CCL5 (RANTES).
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The effects of the conditions were analyzed from three distinct 
perspectives: protein abundance, polarization and colocalization. The 
unstimulated in solution sample served as the reference condition, 
representing minimal uropod formation. Statistical significance was 
assessed using the Wilcoxon rank-sum test (two-sided) to determine 
whether there were significant differences in protein abundance, polar-
ity scores and pairwise colocalization scores between each condition 
and the control sample (Supplementary Table 4). To test differences 
in abundance levels, cells were downsampled to 50 per condition for 
differential polarity and 100 per condition for colocalization.

The analysis of protein abundance and spatial distribution 
revealed notable differences compared to the reference condition. 
Interestingly, for nonimmobilized samples, no changes in protein 
abundance were seen upon stimulation, but significant changes were 
observed in the spatial metrics of polarization and colocalization 
(Fig. 4a–c and Extended Data Figs. 5–7). Effects on immobilized cells 
were more pronounced where the differential abundance analysis 
resulted in 16 proteins with significantly different protein abundance 
(Bonferroni-adjusted P < 0.05, average log2(fold change) > 0.3) in 
any of the conditions (Fig. 4a). The differential polarization analy-
sis identified 11 markers exhibiting significant differentiation in 
protein polarization (Benjamini–Hochberg adjusted P < 0.05, aver-
age difference > 0.0125; Fig. 4b), and the differential colocalization 
analysis identified 40 marker pairs (corresponding to 20 unique 
proteins) displaying significant differences in protein colocalization  
(Benjamini–Hochberg adjusted P < 0.05, average difference > 5; 
Fig. 4c). This illustrates the importance of analyzing spatial rela-
tionships between proteins to gain insights into cellular states. 
Importantly, a notable overlap was observed between the markers 
demonstrating differential colocalization and those showing dif-
ferential polarization, with eight proteins displaying significant 
differences in both spatial tests across at least one of the condi-
tions. Among these proteins, CD50 and CD162, which are known to 
be located within the T cell uropod18, exhibited differential spatial 
arrangement in CD54-immobilized and stimulated samples, with 
increased polarization and colocalization (Fig. 4b,c and Extended Data 
Fig. 8). 3D animations of a T cell displaying uropod formation are pre-
sented in Supplementary Video 2. Notably, CD37 has previously been 
described as participating in uropod formation in B cells, neutrophils 
and dendritic cells19, and is here observed to increase polarization 
and colocalization with CD50 and CD162 upon CD54 immobilization 
and chemokine stimulation in T cells. Validation using fluorescent 
microscopy for CD50, CD162 and CD37 along with two non-polarized 
proteins (CD3 and CD45) confirmed the observed polarization pat-
terns (Extended Data Fig. 9).

In addition, CD43 and CD11a, which are ligands of CD54 used 
in the stimulation or attachment of the T cells18, showed decreased 
abundance and CD11a showed increased polarization, which may be 
effects of the CD54-mediated immobilization partially blocking or 
perturbing AOC binding. The polarization and pronounced three-way 
colocalization among CD50, CD37 and CD162 is visible in the graph 
representation of individual single cells in Fig. 4d (Supplementary 
Fig. 7). The three proteins (CD50, CD37 and CD162) simultaneously 
displayed decreased colocalization and segregation with 17 proteins, 
many of which are ubiquitous and dispersed in T cells, such as CD45, 
CD3E, HLA-ABC and B2M (Fig. 4e and Extended Data Fig. 10). This was 
expected, given that clustering of these three proteins led to a reduc-
tion in colocalization with other proteins.

These findings indicate that the MPX polarity score and MPX 
colocalization score show high concordance in detecting proteins 
with spatial rearrangement across conditions, while providing dif-
ferent yet complementary information about the spatial arrange-
ment of proteins. The MPX polarity score indicates whether a protein 
is spatially clustered on the cell surface, whereas the colocalization 
score reveals the protein’s spatial relationship with other proteins.  
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A spatial pattern of proteins indicating a uropod signal is expected to 
exhibit both increased polarization and colocalization, as observed 
prominently in CD37, CD50 and CD162, all of which are known pro-
teins located in the uropod. This exemplifies how MPX can be used to 
identify patterns of protein spatial organization and their potential 
roles in cellular processes. In addition, the comparison of the effects 
of T cell immobilization on protein abundance (Fig. 4a) and protein 
polarization (Fig. 4b) revealed minimal overlap (Fig. 5) with merely 
three proteins (CD11a, CD8 and CD50) simultaneously showing sig-
nificantly different abundance and polarization for the immobilized 
T cells treated with RANTES. These findings indicate a distinct and inde-
pendent relationship between abundance and the two spatial metrics. 
Although we observed an effect on protein abundance, characterized 
by altered levels of uropod-associated proteins CD43, CD44, CD50, 
CD102 and CD162, the results are most pronounced in the colocaliza-
tion data, highlighting the importance of incorporating spatial metrics 
of multiple proteins for a comprehensive and accurate understanding  
of cell states.

Discussion
Attempts to increase multiplexing in fluorescence microscopy leads 
to lower sensitivity owing to spectral overlap issues, as well as lower 
throughput because of the need for multiple stain, wash, image 
and bleach cycles7. Converting proteins into DNA barcodes using 
proximity-dependent assays to increase multiplexing, sensitivity and 
throughput has been a successful strategy to enable large-scale, nons-
patial plasma proteomics studies20. Using an optics-free DNA barcoding 
strategy also for spatial proteomics will drive similar advancements 
by the virtually endless supply of individually detectable sequence 
barcodes compared to available fluorophores, placing MPX on a 
promising trajectory for even further development. The potential of 
microscopy-by-sequencing over traditional imaging has been described 
in a review as enormous10.

To the best of our knowledge, MPX is a new method to identify the 
relative locations of a large number of proteins in single cells without 
the use of fluorescence microscopy. The method enables a unique com-
bination of multiplexing, throughput and spatial resolution in 3D, pro-
viding spatial dimensions to proteomics-level single-cell research. This 
field holds potential for new insights into essential cellular activities 
such as cell motility, cell activation, drug mode-of-action, drug-target 
discovery based on spatial clustering and formation of cell–cell com-
munication interfaces. The uropod formation study presented here 
highlights the importance of the spatial proteomics of single cells, as 
the data relating to the localization of multiple proteins most strongly 
reflect the migratory status of T cells compared to abundance meas-
urements. MPX could guide the development of therapies that aim to 
spatially reorganize cell surface proteins in order to support immu-
nomodulatory activities21,22, including pretuning immune synapses 
in chimeric antigen receptor T cells23.

MPX enables the representation of cellular states as graph objects. 
Spatial statistics, including permutation testing, can then be leveraged 
to enable the identification and quantification of cellular changes 
relative to randomness. In addition, graph data are particularly well 
suited for neural networks and machine learning, which are increas-
ingly influential in the realm of bioinformatics and computational 
biology24. The laboratory protocol takes 2 days and requires 120,000 
reads per cell to ensure robust spatial maps. Throughput is expected to 
scale with sequencing capacity. We anticipate new algorithm develop-
ment to go beyond the colocalization of protein pairs, to the analysis 
of spatial constellations of multiple proteins. The uniquely combined 
features of multiplexing, throughput and data analysis position MPX 
as a promising new method for spatial proteomic discoveries that can 
be implemented in any laboratory without dedicated instrumentation. 
A notable limitation of MPX is the difficulty to precisely assign a spatial 
resolution owing to the polymer nature of the molecular DNA pixels. 

Also, in areas in which targeted proteins are not present, a negative 
spatial signal is not generated as in light-based microscopy.

As illustrated by the uropod formation study, high multiplexing 
with spatial dimensions in 3D can provide insights into the molecular 
mechanisms behind T cell motility, which is essential in the lymphocyte 
infiltration of solid tumors during immune therapies. As MPX translates 
proteins into nucleic acid-based spatial graphs, we anticipate that its 
applications will extend to facilitating the analysis of other biomol-
ecules such as RNA, increasing multiplexing capacity and enabling 
the analysis of other sample types such as FFPE tissues (currently in 
progress). MPX will benefit from the rapid advances in DNA sequencing, 
computational power, algorithm development and machine learning.
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Methods
PBMC extraction from whole blood
PBMCs were separated from whole blood collected in heparin or EDTA 
blood collection tubes by Ficoll-Paque density gradient centrifugation. 
The platelet fraction was reduced by three repeated centrifugation 
steps at 100×g for 10 min.

CD3 capping of PBMCs
PBMCs were first incubated with 50 µg ml−1 of human IgG for 15 min 
at 4 °C to block Fc receptors and then incubated with 20 µg ml−1 of 
anti-CD3 AOC for 40 min at 4 °C. After two washes, cells were incubated 
with 40 µg ml−1 of goat anti-mouse secondary antibody for 40 min at 
4 °C, followed by incubation at 37 °C for 1 h. The capped cells were then 
immediately fixed with PFA.

Rituximab treatment of Raji cells
Raji cells were Fc-receptor blocked with 50 µg ml−1 of human IgG for 
15 min at 4 °C and washed. Cells were then either PFA-fixed directly or 
incubated with 20 µg ml−1 of rituximab AOC in RPMI medium for 60 min 
at 37 °C, followed by washing and PFA fixation.

Microscopy validation
Fluorescence microscopy validation was performed on a Leica DM 
RB microscope with a ×20 objective, using a Leica K5 sCMOS camera 
after incubation of 40 µg ml−1 of goat anti-mouse secondary antibody 
carrying phycoerythrin fluorophore for 40 min at 4 °C, followed by 
incubation with Hoechst for 5 min at room temperature for nuclei 
staining.

Uropod formation of T cells
PBMCs were first stimulated into PHA blasts with PHA-L for 48 h, 
washed twice in PBS and incubated with 10 ng ml−1 of IL-2 in RPMI 
medium for 5 days at 37 °C. Cell culture plates were coated with either 
5 µg ml−1 of CD54Fc antibody alone or together with either 10 ng ml−1 
of RANTES or MCP1 at 37 °C for 1 h. Approximately 300,000 PHA blasts 
were added to each of the three coated plates for 2 h. The adhered cells 
were then fixed with 1% PFA, before being brought back into suspen-
sion through incubation with TrypLE enzyme solution (Thermo Fisher 
Scientific) for 10 min at 37 °C. For the solution conditions, PHA blasts 
were instead incubated in solution with either 10 ng ml−1 of RANTES or 
MCP1, followed by PFA fixation.

Cell fixation and AOC staining
Cells resuspended in PBS were fixed for 15 min at room temperature in 
a fixation solution containing 1% v/v PFA in PBS. Cells were washed once 
in PBS, followed by addition of a blocking or quenching buffer contain-
ing 1% FBS, 0.1% BSA, 1 mg ml−1 of single-stranded DNA, 50 µg ml−1 of 
human IgG, 125 mM of glycine, 4 mM of EDTA and 0.04% ProClin 300 
in PBS. Cells were incubated for 15 min at 4 °C, followed by a wash in 
PBS to remove the blocking or quenching solution.

Fixated and blocked cells were stained for 30 min at 4 °C in a 50 µl 
reaction containing a cocktail of 80 AOCs, each at a concentration of 
5 µg ml−1, in a staining buffer comprising 0.2% BSA and 2 mM of EDTA 
in PBS. After three washing steps in wash buffer (50 mM of NaCl, 1 mM 
of EDTA, 20 mM of Tris-HCl, pH 8), AOCs bound to cells were stabilized 
using a secondary antibody by incubating the cells for 30 min at 37 °C 
in a secondary antibody solution consisting of 20 µg ml−1 of secondary 
antibody25, 0.2% BSA and 2 mM of EDTA in PBS, followed by two wash-
ing steps in wash buffer, before proceeding with the MPX protocol.

MPX protocol
DNA pixels were allowed to hybridize to AOCs on 15,000 stained cells 
in a 50 µl A-pixel hybridization reaction containing 1 nM of A pixels, 
2 µM of A-aap-fill polymerization (GFP) oligonucleotide and 1 µg µl−1 
of sheared salmon sperm DNA, in a hybridization buffer containing 

300 mM of NaCl, 15 mM of MgCl2, 20 mM of Tris-HCl (pH 8) and 0.05% 
Tween20. The reaction was incubated for 15 min at 55 °C, followed by 
two washes in wash buffer.

A-pixel UPIs were incorporated onto the monoclonal antibody 
oligonucleotides via a 50 µl gap-fill ligation reaction consisting of 40 U 
of Taq ligase (New England Biolabs), 3 U of T4 DNA polymerase (New 
England Biolabs), 100 µM of deoxynucleotide triphosphates (dNTPs) 
and 0.5 mM of NAD+ in 1× rCutSmart buffer (New England Biolabs). 
The gap-fill reaction was incubated at 37 °C for 20 min, followed by 
one wash in wash buffer.

A pixels were degraded by incubating the cells in a 50 µl reaction 
containing 1 U of USER enzyme (New England Biolabs) in wash buffer. 
The reaction was incubated at 37 °C for 30 min, followed by one wash 
in wash buffer.

Hybridization of B pixels was performed in the same reaction 
conditions as described for A pixels with the exception of using B-GFP 
oligonucleotide instead of A-GFP. Similarly, the gap-fill ligation reac-
tion for B pixels was performed in the same reaction conditions as 
described for A pixels.

To remove any incomplete assay products, an exonuclease treat-
ment targeting DNA with unprotected 5′ ends was performed. Cells 
were first counted using a hemocytometer, and an aliquot of less than 
1,000 cells was resuspended into a 15 µl reaction containing 10 U of 
lambda exonuclease, 100 µM of dNTPs, 1 mM of NAD+ in 1× rCutSmart 
buffer (New England Biolabs). The reaction was incubated at 37 °C for 
30 min, followed by heat inactivation at 75 °C for 10 min. See Supple-
mentary Protocol for more information.

PCR and next-generation sequencing
PCR was performed in a 40 µl reaction containing 1× Q5 HotStart Hifi 
PCR master mix (New England Biolabs), 0.4 µM of Illumina adapter 
PCR primers (ILM_p5_PCR, ILM_p7_PCR) containing eight nucleotide 
sample indexes to allow multiplexing and 15 µl of sample from the 
lambda exonuclease step.

The PCR products were purified twice using AmpureXP SPRI beads 
(Beckman Coulter) according to the manufacturer’s instructions and 
subsequently quantified using Qubit HsDNA assay (Thermo Fisher 
Scientific). The purified PCR products were diluted to 0.65 nM with 15% 
phiX spiked in and paired-end sequenced on an Illumina NextSeq2000 
sequencing system, using 44 cycles for Read 1 and 78 cycles for Read 2.

AOC preparation
Monoclonal antibody clones (https://antibodies-online.com), prevali-
dated for specificity by the supplier and in numerous publications, were 
again validated in this study one by one for specific target binding on 
PFA-fixed PBMCs, using flow cytometry. Then they were coupled to 
oligonucleotides using DBCO-Azide click-chemistry26 (Supplementary 
Table 5). After oligonucleotide coupling, each AOC was validated using 
MPX on multiple cell types with known positive or negative expression 
to confirm both functionality and specificity after conjugation. For 
convenience, all antibodies and AOCs were validated and used under 
the same conditions, including concentration.

Rolling circle amplification template preparation
Circularized DNA templates were prepared by incubating 300 nM of 
template oligonucleotides with 200 nM of padlock probe in a 50 µl 
ligation reaction containing 1 mM of ATP and 400 U of T4 DNA ligase 
(New England Biolabs) in a buffer comprising 33 mM of Tris-acetate 
(pH 7.9), 10 mM of magnesium acetate, 66 mM of potassium acetate, 
0.1% Tween20 and 1 mM of dithiothreitol. The reaction was incubated 
for 30 min at 37 °C, followed by heat inactivation at 75 °C for 10 min. 
Then, 10 U of Exonuclease I and 20 U of Exonuclease III (New England 
Biolabs) were added to each ligation reaction, which were incubated  
at 37 °C for 30 min, followed by heat inactivation at 85 °C for 20 min 
(see Supplementary Table 1 for oligonucleotide sequences).
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DNA pixel preparation
DNA pixels were prepared in 75 µl rolling circle amplification (RCA) 
reactions comprising 5 nM of circularized RCA template, 7.5 U of 
phi29 enzyme (Thermo Fisher Scientific), 0.75 mM of dAUGC or 
dNTPS, in the same reaction buffer as the one used for RCA tem-
plate preparation. The reactions were incubated at 37 °C for 4 min, 
followed by heat inactivation at 65 °C for 10 min. rSAP enzyme (1 U) 
was added to each reaction to inactivate free dAUGCs or dNTPS, 
and the reactions were then incubated at 37 °C for 20 min, and then 
at 65 °C for 5 min (see Supplementary Table 2 for oligonucleotide 
sequences). DNA pixels were analyzed by scanning electron micros-
copy and shown to be spherical molecules below 100 nm in diameter 
(Supplementary Fig. 1).

Data analysis using Pixelator
MPX sequencing data were analyzed using a dedicated open-source data 
analysis pipeline, Pixelator. First, sequence reads were quality-filtered 
to remove low-quality reads. Next, reads were matched against the 
common pixel binding sequence motifs (BS1 and BS2), and reads with 
a mismatch of >10% were discarded. The BS1 and BS2 sequences were 
then discarded, and only the UMI, BC, UPI-A and UPI-B sequence motifs 
were kept for each read. Duplicate reads generated from the PCR step 
before sequencing were collapsed into unique sequences defined by 
the combination of the 10 nt UMI and the 25 nt UPI-A sequences. The 
correction of PCR and sequencing errors was performed by cluster-
ing the set of putative unique UMI–UPI-A sequences with the help of a 
modified approximate nearest neighbor algorithm and by identifying 
the most frequent sequence from the read sequences that clustered 
together. The UPI-A, UPI-B, UMI and BC sequence motifs were extracted 
from each unique read and stored as an edge list. An undirected graph 
was generated from the UPI-A and UPI-B sequences of the edge list from 
a sequenced sample.

Community detection based on modularity maximization was 
performed on the resulting graph with the Leiden algorithm to iden-
tify and remove any spurious edges connecting otherwise densely 
connected communities assumed to represent cells. The resulting 
graph contained a set of connected components, each being a disjoint 
subset of the graph not connected to any other connected compo-
nents. Component memberships were assigned to each edge of the 
edge list, and a count matrix was generated by summing up counts 
per component for each protein of the edge list. CLR-transformed 
counts were calculated per component member and used for cell 
annotation purposes.

From the total number of edges of each component membership, 
size outliers were identified based on the descending rank order dis-
tribution. A size threshold based on the rate of change was defined by 
finding the first and second derivatives from a univariate smooth spline 
curve fitted to the linear-log distribution of the ranked antibody count 
data. Edges for components considered as size outliers were removed 
from the edge list. The components that remained after size filtering 
were considered to represent cells.

Finally, the filtered edge list was used for downstream analysis, 
such as calculation of MPX polarity scores and colocalization scores, 
by interrogating the UPI-A one-mode projected graph from each cell. 
The graph generated from the UPI-A and UPI-B sequences of the edge 
list is bipartite, forming edges only between UPI-A and UPI-B nodes, and 
never between two UPI-As or two UPI-Bs. The one-mode projections of 
the graphs, with edges linking directly between UPI-A nodes, and the set 
of antibody counts associated with each UPI-A node as node attributes 
were used for calculating spatial metrics such as MPX polarity scores 
and colocalization scores.

MPX polarity score calculation
Spatial autocorrelation was used to quantify the degree of cluster-
ing or nonrandomness of the spatial locations of each protein within 

each UPI-A one-mode projected cell graph. Moran’s index (I) of spatial 
autocorrelation was computed for each CLR-transformed protein 
node count from every cell graph based on the spatial weights defined 
by the row-normalized adjacency matrix of the one-mode projected 
cell graphs. In addition to Moran’s I value, a z-score and a P value were 
computed under the randomization null hypothesis for each cell graph. 
The obtained Moran’s I was referred to as ‘MPX polarity score’, showing 
the level of clustering or nonrandomness of each protein in the context 
of the spatial structure of the cell graph that they were calculated from. 
Elevated scores would be indicative of clustering or nonrandomness, 
and scores centered around zero would suggest a spatial pattern not 
significantly different from randomness.

MPX colocalization score calculation
The calculation of ‘MPX colocalization scores’ per pairwise combina-
tion of proteins consisted of six steps, performed for each individual 
UPI-A one-mode projected cell graph. The first step involved stringent 
filtering on the protein counts, which removed data points with few 
counts to generate a robust score, disregarding markers with less than 
ten counts in total. The second step involved neighborhood aggrega-
tion, in which counts from A pixels in immediate connected neighbor-
hood nodes were summed up, disregarding spatial neighborhoods with 
less than five counts. The third step was permutation, which generated 
simulated components with permuted protein localization. These 
components were used to create a null distribution that enabled the 
calculation of how much the resulting score deviated from random 
colocalization. The fourth step involved log-transformation (log1p), 
which was applied to the count data of the original component as well 
as to the permuted components. The fifth step involved calculation of 
the colocalization score statistic, Pearson’s r. Last, the sixth step was 
null distribution fitting, which compared the observed score to the 
scores of the permuted components to generate a P value and z-score 
that describe the degree to which the score was lower or higher than 
what was expected by chance.

Graph visualization in 3D
Three approaches were used to generate graph layouts for visualization 
purposes. It is important to note that all data analyses were performed 
on raw graphs and not on layouts or spherical representations. In the 
first approach, Euclidean coordinates in 3D were generated for each 
node by applying the Kamada–Kawai force-directed graph layout algo-
rithm on the graph representation of a cell. For the second approach, 
the generated coordinates were projected onto the unit sphere by divid-
ing each coordinate by its norm. The subset of graph nodes associated 
with a protein marker of interest was colored.

For the third approach, a density heatmap was generated from the 
sphere-projected coordinates. A color value representing count density 
was obtained for each point of a 3D grid representing the surface of 
the unit sphere. This was achieved by applying a function that iterated 
over each surface grid point and calculated the distance, defined by 
the Euclidean norm, to each of the sphere-projected node coordinates 
associated with a specific protein target. For all node coordinates 
within a selected distance cutoff value to each grid point, 1 − distance/
distance_cutoff was calculated, and the logarithm of this sum was used 
as the color value for each grid point.

Data post-processing
The cells were filtered to remove size outliers, a common practice 
in flow cytometry and single-cell analysis, removing the ten largest 
components and setting a manual cutoff for the minimum number 
of detected UMIs per cell. This cutoff was set by examining the dis-
tribution of the number of UMIs in an ‘edge rank plot’ (Supplemen-
tary Fig. 8) showing the number of UMIs per component versus its 
rank, and selecting a cutoff approximating the elbow point where 
the component size is sharply declining in relation to the size rank. 

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02268-9

The minimum component size cutoffs selected per dataset were 
4,000 for the unstimulated PBMC experiment, 5,000 for the CD3 
capping experiment, 20,000 for the Raji experiment and 8,000 for 
the uropod experiment. Next, the cells were filtered for outliers in 
terms of distribution of counts across AOCs using the Tau metric27, a 
numerical value between 0 and 1 describing the degree to which the 
distribution of counts is skewed across markers. Even distribution 
across markers generates a Tau of 0, and a distribution completely 
skewed to a single marker results in a Tau of 1 (see Methods). Antibody 
aggregates often consist of a random composition of antibodies (high 
complexity) or are composed of a single antibody (low complexity), 
resulting in a notably low and high Tau score, respectively. The Pixela-
tor pipeline marks components as ‘High Tau’ if the Tau score is above 
0.995 or deviates from the population median with more than two 
interquartile ranges (IQRs), and as ‘Low Tau’ if the Tau score deviates 
more than 5 IQRs from the population median. Downstream analysis 
was performed using Seurat (v.4.3.0)28 in R (v.4.2.2), as well as broom 
(v.1.0.2), rstatix (v.0.7.1), SeuratObject (v.4.1.3), tidygraph (v.1.2.2) 
and tidyverse (v.1.3.2)29 for analysis, and ggforce (v.0.4.1), ggplot2 
(v.3.4.0)30, ggplotify (v.0.1.0), ggpubr (v.0.5.0), ggraph (v.2.1.0), 
graphlayouts (v.0.8.4)31, igraph (v.1.3.5)32, patchwork (v.1.1.2), pheat-
map (v.1.0.12), plotly (v.4.10.1)33, viridis (v.0.6.2) and viridisLite (v.0.4.1) 
for data visualization. Count data were CLR-transformed over each 
cell, and protein counts were scaled per protein by their mean and 
s.d. centered before dimensionality reduction and clustering. UMAPs 
were created from the first 12 components of a principal component 
analysis performed using markers, but excluding platelet markers 
(CD9, CD29, CD36, CD41, CD62P) and control markers (ACTB, mIgG1, 
mIgG2a, mIgG2b). Parameters included n_neighbors = 25, spread = 2 
and min.dist = 0.1. Cell clustering was performed by Louvain commu-
nity detection on a shared nearest neighbor graph at default settings 
(k.param = 20, prune.SNN = 1/15).

T cell gating (CD3 polarization analysis)
The T cell fraction of the PBMC sample was extracted by applying 
cutoffs on CLR-transformed counts for T cell markers of >0.9 for CD3 
and either >1.8 for CD4 or >1.5 for CD8. Cells other than T cells were 
removed from the data by filtering the cell-count matrix at <0.5 CD19, 
<1.1 CD20 and <0.5 CD14. The CLR-transformed count distributions and 
the cutoffs used to filter the data are shown in Supplementary Fig. 9.

Doublet estimation
To estimate the rate of doublets, Daudi and Jurkat cells were fixed 
separately, then counted and mixed at a 50:50 ratio before proceeding 
with AOC staining and the MPX protocol.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The MPX raw read data and Pixelator 0.12 processed output can be 
downloaded from Pixelgen Technologies (https://software.pixelgen.
com/datasets). Datasets are granted under a Creative Commons Attri-
bution (https://creativecommons.org/licenses/by/4.0/legalcode) 
license. Source data are provided with this paper.

Code availability
All analysis code can be found at https://github.com/Pixelgen-  
Technologies/pixelgen-MPX-paper.
A nf-core pipeline to run Pixelator on MPX data with demo examples is 
available at nf-core (https://github.com/nf-core/pixelator). A python 
package for MPX data analysis, data processing and algorithms on 
Pixelator is available through Pixelgen Technologies Github (https://
github.com/PixelgenTechnologies/pixelator).
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Extended Data Fig. 8 | Violin plots of an example of a differentially  
abundant and polarized marker, and a differentially colocalized marker  
pair across conditions. The level of the two-sided Wilcoxon Rank Sum test 
p-value is denoted as follows: ‘ns’ = not significant, ‘*’ = p < 0.05, ‘**’ = p < 0.01, 

‘***’ = p < 0.001, ‘****’ = p < 0.0001. Respective p-values are (from left to right): 
Abundance: 0.3745, 0.0151, 0.0029, 2.2e-11, <2e-16; Polarization: 0.23, 0.59,  
<2e-16, <2e-16, <2e-16; Colocalization: 0.56, 0.34, 5.7e-15, <2e-16, <2e-16.
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Extended Data Fig. 9 | Fluorescence microscopy validation of MPX data 
on uropod formation in T cells immobilized on an ICAM1 coated surface 
and stimulated with RANTES. The fixed cells were prepared as described for 
immobilized cells stimulated with RANTES, separately from two donors. The cells 
were then incubated with 5 µg/ml of the AOC for the indicated target for  

40 minutes at 4 ॰C, followed by staining using a secondary antibody and imaging 
as described in Microscopy validation section of Methods. Top: Dispersed 
control markers CD3E and CD45 show dispersed localization on the cell surface. 
Bottom: Uropod markers CD37, CD50, and CD162 display spatial clustering 
toward the uropod bulge. Both donors displayed similar results.
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Extended Data Fig. 10 | Network visualizations of differentially colocalized 
protein pairs. Protein pairs that are differentially colocalized across any of the 
5 conditions (CD54 coating and/or chemokine stimulation) compared to the in 
solution unstimulated control sample. The difference (increase or decrease)  
in colocalization between a pair of proteins is shown as the color of the link  
(blue = decrease, red = increase), and both the size of the link and its color 

intensity shows the magnitude of the difference. The level of the two-sided 
Wilcoxon Rank Sum test Benjamini Hochberg adjusted p-value is denoted  
as follows: ‘*’ = p < 0.05, ‘**’ = p < 0.01, ‘***’ = p < 0.001, ‘****’ = p < 0.0001  
(See Supplementary Table 4 for exact p-values). Colocalization differences 
that are not statistically significant are still shown, but without the p-value 
annotation.

http://www.nature.com/naturemethods









	Molecular pixelation: spatial proteomics of single cells by sequencing
	Results
	Polarity scores by spatial autocorrelation from stimulated T cells and drug-treated B cells
	Colocalization of protein pairs
	Combined spatial analysis of chemotactic T cells

	Discussion
	Online content
	Fig. 1 Molecular Pixelation.
	Fig. 2 Count data from an MPX experiment of healthy PBMCs.
	Fig. 3 Protein polarization triggered by cell stimulation detected by spatial MPX polarity scores for CD3-capped T cells and rituximab-treated Raji B cells.
	Fig. 4 MPX of chemokine-stimulated CD54 (ICAM1)-immobilized T cells.
	Fig. 5 The effect of T cell immobilization and chemokine stimulation.
	Extended Data Fig. 1 Distribution of metrics per component (single cell).
	Extended Data Fig. 2 Doublets from MPX.
	Extended Data Fig. 3 MPX Polarity Scores for stimulated and control conditions of all markers with total counts above isotype control levels.
	Extended Data Fig. 4 Analysis of B-T cell complexes using colocalization scores.
	Extended Data Fig. 5 Volcano plots of uropod differential abundance analysis.
	Extended Data Fig. 6 Volcano plots of uropod differential polarity analysis.
	Extended Data Fig. 7 Volcano plots of uropod differential colocalization analysis.
	Extended Data Fig. 8 Violin plots of an example of a differentially abundant and polarized marker, and a differentially colocalized marker pair across conditions.
	Extended Data Fig. 9 Fluorescence microscopy validation of MPX data on uropod formation in T cells immobilized on an ICAM1 coated surface and stimulated with RANTES.
	Extended Data Fig. 10 Network visualizations of differentially colocalized protein pairs.




